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The Role of Membrane Pressure in Reverse Osmosis 

D. R. PAUL, Department of Chemical Engineering, 
The University of Texas, Austin, Texas 7NlR 

synopsis 
Liquid transport occurs through reverse osmosis membranes as a result of an applied 

pressure differential. The pressure within the membrane continuum is an important 
thermodynamic parameter in the formulation of solution-diffusion models for this process. 
It is shown that this membrane pressure is the same throughout the membrane for sup- 
ported flat and tubular membranes and for hollow fibers. The use of this parameter in 
calculating the induced concentration differential is discussed. 

INTRODUCTION 

In recent years, reverse osmosis has emerged as an attractive process for 
removing solutes from liquids to produce potable water and for pollution 
abatement, to mention but a few applications. Membranes in the form 
of flat sheets or tubular geometries have been used. The advent of hollow 
fibers for this purpose has opened up new horizons for commercial applica- 
tion of this method. Regardless of geometry, the external driving force 
for the transport of liquid through the membrane is the application of pres- 
sure to the feed solution so that a pressure differential exists across the 
membrane. It is a question of mechanisms as to how this phenomenologic 
driving force operates within the membrane to effect liquid transport. 
According to the solution-diffusion models, the pressure differential induces 
a concentration gradient of liquid within the membrane, and transport 
proceeds by simple Fickean diffusion.' It is the purpose of this paper to 
explore further the details associated with transport of the liquid species by 
this mechanism for the above-mentioned membrane geometries used in re- 
verse osmosis. Special attention is paid to the pressure within the mem- 
brane, since this is believed to be a key parameter to a correct formulation 
of a solution-diffusion model. Its role in flat membranes has been con- 
sidered previ~usly,~.~ and an extension to include hollow fibers is made here. 

In most solution-diff usion analyses of reverse osmosis, the concentration 
gradient is considered to arise by the Poynting effect, in that the applied 
pressure increases the liquid activity within the membrane at, the upstream 
surface and thereby increases the swelling there beyond the normal solu- 
bility of the liquid in the polymer. This is a misapplication of this con- 
cept, and a correct formulation reveals that no increase in swelling should 
occur at the upstream surface of a flat membrane but that there will be a 
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decrease in swelling at  the downstream surface instead.2 A direct experi- 
mental proof of this point has been made.3 It is true that the chemical 
potential of the liquid within the membrane at the upstream surface will be 
increased by the application of pressure, and the activity there may be 
raised depending on the definition employed for the latter. A more useful 
definition is to write the chemical potential for the solvent (species 1) as 

MI = pio + RT In ai + Vi (p - p,) (1) 
where now the activity of the solvent, a1, is primarily dependent on com- 
position and will have only a secondary dependence on pressure caused by 
volume changes on mixing and alteration in intermolecular interaction by 
increased pressure. At equilibrium, the chemical potential of species 1 
must be the same in both phases, and consequently from eq. (1) the activity 
of species 1 as defined there will be the same in each phase unless the pres- 
sures in the two phases are different so long as the partial molal volumes of 
species 1 are the same in both phases. Thus, barring the secondary effects, 
we would predict that the degree of swelling of a polymer immersed in a sol- 
vent (which does not completely dissolve it) will be independent of the pres- 
sure applied to the solvent if the pressure within the polymer is the same as 
the liquid pressure. If the pressures in the two phases can be made differ- 
ent somehow, then the activity of solvent in the polymer or membrane 
phase, aP, will be related to the activity in the liquid phase, a18, by 

(2) = alseV1(P-Pm)/RT 

where p and p ,  are the pressures in the liquid and membrane phases, re- 
spectively. Thus, in this case, the degree of swelling of the polymer will 
change as a primary consequence of the pressure difference. For p > p,, 
the degree of swelling will increase, and for p < p,, it will decrease. Equa- 
tion (2) may be considered as a correct statement of the Poynting effect.' 
Since equilibrium will prevail a t  both membrane surfaces, this condition 
must be applied at  each surface. It is thus clear that the membrane pres- 
sure is a necessary consideration. 

In the case of a soft polymer simply immersed in a liquid, it is easily 
visualized that the pressure is always the same in both phases. Ham et a1.6 
have investigated the effect of pressure on vulcanized rubbers immersed in 
highly swelling solvents. They found that the degree of swelling changed 
by no more than about 3% when the pressure applied to the solvent was 
30,000 psi. This change was found to be a decrease or increase, depending 
on the polymer or solvent employed. Thus, all offects are clearly of the sec- 
ondary type described above and can be totally ignored at the modest pres- 
sures employed in reverse osmosis. 

To pursue the application of eq. (2) in reverse osmosis, it is necessary to 
know the membrane pressure for a given membrane geometry. The con- 
cept of pressure within a material with elastic characteristics raises some 
profound questions. If this material is composed of a component which 
has load bearing characteristics (the polymer) and one that does not (dis- 
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solved solutes such as the solvent), is the pressure at a point the same for all 
of the components? Pressure is a macroscopic, not a molecular concept, 
and since macroscopically the membrane plus dissolved solvent is a homo- 
geneous, single phase, we are compelled to consider the pressure to act on 
the continuum. When forces are applied to an elastic material, the normal 
stresses that result may not be isotropic. As a result of this, a rational 
definition of pressure is taken to be the average of the principle normal 
stressesj6 that is, the membrane pressure will be 

p ,  = trace (d) (3) 
where d is the complete stress tensor. The stress tensor may be computed 
in principle from the equations of elasticity solved with the applicable 
boundary conditions. We identify the pressure computed from eq. (3) 
with the thermodynamic pressure required in eq. (1). The general appli- 
cability of this identification has apparently never been explored. Excep- 
tions may be envisioned, e.g., systems which do not readily attain local 
thermodynamic equilibrium or in cases where Poisson’s ratio is much less 
than 0.5. We postulate that it should be applicable to membranes which 
are appreciably swollen by the solvent employed, since this would facilitate 
the attainment of the above conditions. 

Individual components of d generally vary with position within the mate- 
rial. Interestingly however, we will show next that, for the important 
cases of flat and tubular membranes and hollow fibers, p ,  is a constant 
throughout the membrane. 

SUPPORTED MEMBRANES 
For reverse osmosis usage, flat membranes are generally supported on the 

downstream side by a porous plate, as shown in Figure 1 where a totally 
dense membrane is pictured. Asymmetric membranes such as the Loeb 
type, which have a porous matrix overlaid by a totally dense skin, are anal- 
ogous to the situation in Figure 1 for our purposes, as we can consider the 
porous matrix of the membrane as a simple extension of the porous plate. 
We will consider that the pores in the support plate are vanishingly small 
so that there is no appreciable stress concentration within the membrane 

Fig. 1. Flat, supported membrane. 
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in the vicinity of a pore; however, as a practical matter, the pores should 
be large enough to easily transmit the permeate. Further, we will assume 
that the deswelling which has bcen shown to occur a t  the downrstream 
membrane surface2 is small enough so that appreciable lateral forces do riot 
develop. For such conditions, it was demonstrated earlicr using a swollen 
polymer network as thc membrane2 that it is necessary to equatc thc mem- 
brane pressure p ,  to the upstream fced pressure po to properly describe the 
induced concentration gradient and the resulting flux. Mechanically, this 
assertion can be understood by realizing that the force the upstream fluid 
pressure po exerts downward on the membrane is transmitted through the 
membrane to the support plate, which in turn exerts an equal force up- 
ward. The pressure on the membrane continuum is therefore po through- 
out. 

It may be helpful as an analogy to view the membrane as a liquid with a 
very high surface tension which does not wet the porous support plate (and 
therefore does not enter the pores until very high pressures are applied). 
This fluid “membrane” maintains its identity when a feed liquid is placed 
above it so long as the “membrane fluid” is not miscible in the feed liquid. 
Miscibility of the feed in the “membrane” is permissible. When a pres- 
sure po is applied to the feed liquid, it is eminently clear that the pressure 
in the “membrane” is also PO. Now, bestowing load-bearing characteris- 
tics, i.e. elasticity, to the membrane per se does not destroy this analogy. 
Thus, barring extraordinary conditions, it should be clear that p ,  in a fiat 
membrane is po. This is also true for supported tubular membranes whose 
thicknesses are very small compared to their diameters, provided the mem- 
brane and support tubes are properly sized so that stretching or compres- 
sion does not occur when pressurized. 

Application of eq. (2) to the membrane in Figure 1, with the realization 
that p ,  = po, yields for the upstream (x = 0) and downstream (x = 1) sur- 
faces as before2 

alom = a d  
- Vd%--P Z)/RT alzm = 

HOLLOW FIBERS: AN UNSUPPORTED MEMBRANE 

Fine, hollow fibers as depicted in Figure 2 are employed in reverse os- 
mosis. In  principle, the pressurized feed solution may be inside or outside 
of the bore. The fiber wall serves as the membrane, and no mechanical 
support such as the porous plate in flat membranes is provided in the sim- 
plest case. The membrane pressure here is more difficult to ascertain since 
the simple arguments used for flat membranes are clearly inadequate. 
The elastic character of the fiber wall is directly involved since the lack of 
support and this geometry require the membrane material itself to resist 
the impressed force. We will obtain the membrane pressure from solutions 
to the elasticity equation which give the components of the stress tensor d. 
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Fig. 2. Hollow fiber geometry. 

The components urr, gee, a,, can then be used to compute p ,  via eq. (3) .  
For this purpose, we will treat the hollow fiber of Figure 2 as a long, thick- 
walled tube with pressures p ,  inside and po outside. Further, it is assumed 
that the fiber wall is isotropic and displays linear elastic behavior. An ex- 
act solution to the elasticity equation for this situation is available? The 
u,, and a,, components (tension is positive) at  any radial position r are 

The component uzz depends on the axial restraints but does not depend on r 
in any event. Owing to the opposing signs in the position-dependent parts 
of eqs. (6) and (7)) the sum of a,, and gee is independent of this position. 
Thus, in view of the nature of u,,, p ,  is a constant throughout the fiber 
wall although two of the stress components do vary. 

The magnitude of p ,  is unspecified until the exact configuration of the 
hollow fiber is defined. Many module designs employ a looped-end con- 
figuration,* and discussion will be based on this geometry. A simple force 
balance for the looped construction yields 

Combining eqs. (6) through (8) in the fashion dictated by eq. (3) gives for p ,  

For the isotropic, dense-walled, hollow fiber, the membrane pressure is 
independent of position within the wall, but in general is not equal to either 
pa or p i .  Figure 3 shows a dimensionless plot of eq. (9) as a function of the 
ratio of the wall thickness, t = Ro - Rip to the outside radius. For very 
thick-walled fibers, p ,  approaches po, while for very thin-walled fibers it be- 
comes very large. The latter case would describe a tubular membrane 
without support. For the more common case of external pressurization, 
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Fig. 3. Reduced membrane pressure for hollow fiber. Wall thickness t = RO - Ri. 

po > p, ,  the membrane pressure is greater than PO, while for internal pres- 
surization, p ,  > PO, and it may even be negative. 

The foregoing analysis is inapplicable for many commercially utilized 
hollow fibers since the inherent assumption of isotropy is not met. Often 
the fiber wall is not totally dense throughout but has a gradation of po- 
rosity. In many respects such fibers resemble the structure of Loeb-type 
flat membranes. Generally, there is a totally dense skin which is re- 
sponsible for the rejection characteristics of the hollow fiber in reverse 
osmosis. The porous matrix is present merely for mechanical support. 
Since the matrix is not homogeneous, it is possible to have a different 
pressure within the solid phase than the liquid contained in the pores. 
Transport in this region may be regarded as simple viscous flow through 
the pores. Fluid pressure may be transmitted through the pores up to the 
skin (a sharp demarcation may not exist) in much the same fashion as 
with the porous support plate in the flat membrane (see Fig. 1). Equations 
(6) through (8) are inappropriate for this situation. The mechanical condi- 
tion within the skin is actually a complex composite of the flat supported 
membrane and the dense hollow fiber. It therefore seem reasonable that 
the membrane pressure within the skin would still be independent of 
position; however, it cannot be computed from any of the arguments 
given here, 
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Even a totally dense, hollow fiber may not meet the condition of isotropy, 
since in reverse osmosis operation there will be a concentration gradient of 
the solvent (and solute) across the wall. Undoubtedly, the modulus of 
the fiber wall will depend on the liquid content. This may lead to a 
variation of p, with position, but this variation is only a secondary effect. 
To a good approximation, we may conclude that the membrane pressure 
is constant throughout the wall of a hollow fiber where diffusive transport 
occurs, i.e., that portion which is one phase. 

THE PRESSURE-INDUCED CONCENTRATION GRADIENT 

From the outset it was stated that the action of the applied pressure is 
to induce a concentration gradient of the solvent when solution-diffusion 
is the operative mechanism. In this section we will consider in detail 
how this occurs within the framework of the membrane pressure con- 
cept. 

For a given membrane and solvent, there is a unique relation between the 
concent.ration of solvent and the activity of the solvent in the membrane, 
aim, when the definition implicit in eq. (1) is used. Once the membrane 
pressure is known, eq. (2) may be applied at each surface to determine thc 
activity just inside the membrane there. From the activity-concentration 
relationship, the concentration differential may be determined directly. 
Equations (4) and (5) give the activities for the special case of the sup- 
ported membrane. Since for hollow fibers the membrane pressure does 
not correspond to either fluid pressure, the activities at both surfaces 
within the membrane will differ from the liquid-phase activities. 

We will examine further the special case where the connection between 
the activity and concentration follows the notion of an ideal solution, 
since this approach is employed in many situations7 with some justification. 
By definition, 

where q is the volume fraction and c1 is the mass concentration of species 1. 
The asterisk (*) denotes the equilibrium solubility of species 1 in the 
membrane material. Thus, at an interface where the liquid pressure is p 
and the membrane pressure is p,, eqs. (2) and (10) combine after taking 
the logarithm of both sides to give 

Cl v1 

Cl* RT In- = In al* + - ( p  - p,). 

If cl is never much different from CI*, we may use the approximation 

c1 c1 - cr* 
Cl* Cl* 

In- -. 
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Combining eqs. (11) and (12) for an upstream surface u and a downstream 
surface d gives 

RT 

and 

The concentration difference then is 

making note of the definition of osmotic pressure, 

ln.al*. 
RT 
Vl 

n- = -- 

Equation (15) is a familar result'; however, the following points are note- 
worthy. While a linear relation is predicted between Ac1 and the net 
pressure, this linearity may break down in extreme situations, even for 
ideal solutions, owing to the approximation assumed in eq. (12). Further, 
cl* will be affected by the presence of solutes in the liquids, and thus a 
different value for this quantity may be required in eq. (13) than eq. (14). 
In  general, solutes will cause the membrane to deswell and thereby reduce 
the flux below that for pure solvent at the same net pressure, Ap - AT. 
It js to be noted that this membrane pressure does not appear in the 
final result, i.e., eq. (15), because it cancels out in the subtraction of eq. (14) 
from eq. (13). This cancellation occurs only as a result of the linearity of 
these relations, and it is our contention that it is only because of this condi- 
tion that the role of membrane pressure has been successfully ignored in 
the past. 

It is also important in the formulation of eq. (15) that the membrane 
pressure be constant throughout the membrane. The total decrease in 
the chemical potential of solvent going from the upstream liquid to the 
downstreamliquid is Vl[(p, - p d )  - (rU - T ~ ) ] ,  regardless of what occurs 
within the membrane. If p ,  is constant, all of this decrease occurs within 
the membrane via the concentration gradient. If p ,  varies, the gradient is 
altered. If, in fact, pm were pu  at  the upstream surface and pd at the down- 
stream surface, there would be no gradient pt all. Arecent determination of 
the concentration gradient in a highly swollen, flat, supported membrane 
showed that the entire decrease in chemical potential could be accounted 
for by the concentration gradient.a Also in this case, identification of 
the membrane pressure was required to describe the induced concentra- 
tion gradient, thus confirming the importance of this parameter for a com- 
plete description of the solution-diffusion process. 
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Fig. 4. Equilibrium swelling of a crosslinked polymer network where the pressure in 
the polymer, p,, and the surrounding liquid, p ,  are dserent. Calculations are for 
(v,/VO)VI = 10-2. Note that at a reduced abscissa of 0.1, p ,  - p = 330 and 1650 psi 
for Vl = 100 and 20 cc/mole, respectively. 

In general, the relation between c1 and p - p ,  is not linear since the ideal 
solution concept is not universal. We will pursue for illustrative pur- 
poses the special case of a crosslinked polymer-solvent system which 
obeys the Flory-Huggins mixing theory, with elastic effects accounted for 
by the theory of rubber elasticity. Swelling is restricted to one direction 
after equilibrium at p = p ,  is obtained. No solute is considered. The 
relation between the liquid volume fraction v1 and p - p ,  is' 

This relation is plotted in Figure 4 for four arbitrarily chosen values of 
v1* which is the equilibrium volume fraction of liquid in the network at free 
swelling, i.e., p ,  = p .  In  all cases, the relation is nonlinear but becomes 
more nearly so at  positive values of p ,  - p a t  low swelling. For values 
of v1* < 0.2, a linear approximation would be justified for most purposes. 
Plots such as these have been employed in the for positive values 
of p ,  - p with considerable success. It is to be recalled that at the down- 
stream membrane surface in a flat, supported membrane, p m  - p = PO - p i .  
Figure 4 extends into the region of negative p,,, - p ,  which is never en- 
countered with flat, supported membranes (at the upstream surface p ,  - 
p = 0),  but this region would be encountered with internally pressurized, 
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hollow fibers according to the prediction given in Figure 3. For this system 
under discussion, nonlinearities are quite evident in this region. In fact, 
for VI* = 0.2 and 0.4, v1 appears to become double-valued at  high negative 
pressure differentials. This strange state of affairs is simply an indication 
of a thermodynamic transition where at a point two phases develop: one 
rich in polymer, the other rich in solvent. In  other words, for p ,  SUE- 
ciently less than p ,  the poorer solvent “dissolves” the membrane. To 
the author’s knowledge, no transition such as this has ever been reported. 
However, it is to be noted that p ,  can only be made less than p by applying 
a tensile stress field to the polymer, and it is doubted whether it is mechan- 
ically possible to reach a stress gUEcient to cause this change because of 
strength limitations of the material. 

SUMMARY 
It has been proposed here that the membrane pressure is a necessary 

consideration in the total formulation of solution-diffusion models for 
solvent transport in reverse osmosis. For some purposes it may be 
ignored, depending on the swelling characteristics of the membrane. 
However, the necessity of its use in all formulations for highly swollen 
membranes has been e~tablished.~.~ The value of the membrane pressure 
for supported, flat membranes may be reasoned from rather simple argu- 
ments. In the case of hollow fibers, this quantity was assumed to be 
given by eq. (3), which is a rational assumption but largely unproven. 
The results of this hypothesis do, however, lead to the appealing conclu- 
sion that p ,  is constant across the fiber wall. 

Some further discussion of the use of the mechanical definition of p ,  
in eq. (3) as a thermodynamic variable is in order. This equation predicts 
the pressure within a material subjected to an externally applied uniaxial 
stress of Sll is -I/a S11 + p ,  where p is ambient pressure. Therefore, 
p ,  - p will be positive if this stress is compressive and negative if tensile. 
It would thus be informative to know what happens to the level of swelling 
of this material when immersed in a solvent and subjected to stressing. 
Treloarlo and Flory and Rehner“ have reported such experiments with 
cross-linked rubber immersed in solvents. For tensile stressing, the 
swelling, i.e., v1, increases, whereas it decreases for compression loading. 
These directions are consistent with the general prediction of eqs. (3) and 
(2) and the special case shown in Figure 4. The published experiments are 
inadequate to test the quantitative use of eq. (3) as a predictor for these 
responses, although suggestions to this effect have been made.12J3 

In this paper we have presumed from the outset to treat the transport 
of liquids through a nonporous polymer membrane which occurs by a solu- 
tion-diffusion mechanism when the concentration-gradient driving force is 
created by the application of a pressure differential across the membrane. 
From theoretical reasoning and experimental results, we conclude that in 
the ideal case, liquid transport in reverse osmosis occurs without any pres- 
sure gradient within the membrane. The pressure we speak of should be 
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consistent with both thermodynamics and mechanics and must be con- 
sidered to act on the continuum and not individual species. Other points 
of view exist in the literature. For example, Fatt et al.I4 consider that when 
a liquid swells a membrane, an “imbibition” pressure is generated and 
that when a gradient of swelling exists, there is a gradient of “imbibition” 
pressure. He goes on t o  consider that the flux of liquid under these condi- 
tions consists of two parts: one is a diffusive flux driven by the gradient of 
liquid concentration and the other is a convection flux driven by the “im- 
bibition” pressure gradient. Fatt’s “imbibition” pressure is identical in 
definition to Gehman’s “swelling” pressure, and both are effectively defined 
by eq. (2). Except under certain conditions, e.g., at surfaces or when the 
membrane is in equilibrium throughout, the “imbibition” pressure Fatt 
uses is a useful but hypothetical concept. When applied to a point in the 
interior of a membrane with a swelling gradient, this pressure (when cal- 
culated from the solvent activity at  that point) (a) is not the pressure felt 
by the continuum at that point nor (b) does it properly give the chemical 
potential of the liquid when inserted into eq. (1). From this point of view 
we can see no basis for considering this factor capable of driving a convec- 
tive flux. 

Bert15 considered a similar convective transport mechanism as described 
above to explain the curvature in plots of water flux versus applied pres- 
sure, referred to by Bert as “compaction,” for a presumably totally dense 
cellulose acetate membrane. We feel that such a curvature can occur 
for three reasons when solution-diffusion mechanisms are operative: (a) In 
membranes with a porous matrix below the active skin, a compaction of 
the matrix may occur at  high applied pressures with a resulting decrease in 
permeability of the composite (this phenomenon is time dependent and is 
largely irreversible). (b) The thermodynamics may be such that a non- 
linear relation between the induced concentration differential and the 
applied pressure e ~ i s t s . ~ . ~  (c) The diffusion coefficient may vary with con- 
centration in such a way as to produce this effect. The latter two may 
exist in totally dense membranes without any porous matrix, and they are 
time independent and reversible. Bert’s analysis considers that there is a 
gradient of pressure and that the pressure at  each point reduces the swelling 
there according to the concept of the “imbibition” pressure. The curva- 
ture he predicts arises from the dependence of the transport coefficient em- 
ployed on swelling level. The profile of water content that he predicts is 
one of equilibrium swelling at  the downstream or low-pressure surface and a 
reduced swelling at  the upstream or high-pressure surface, which is the 
exact opposite of our earlier prediction.2 The result gives a water con- 
centration gradient in the opposite direction of the water flux and is in direct 
conflict with all experimental attempts to measure this gradient in reverse 
osmosis.3s*6 
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